Epipolar Geometry
1. Epipolar Geometry
Two images taken at the same time, in different positions, by different cameras.
2. The fundamental matrix
在I1及 I2上相對應的特徵點,滿足:
which is:
We can build an linear system with n corresponding feature points located on two images:
找到最佳解f即為Fundamental matrix。
Basic algorithm: normalized 8-points algorithm
重要觀念:
Two images taken at the same time, in different positions, by different cameras.
- Don't need to search across the entire image to estimate the motion vector
- Only one degree of freedom for the possible correspondence
假設有兩張連續拍攝的影像I1, I2,則物體P在I2上的成像點必落在一條線上,稱之為Epipolar line(因為不知道P與I1的距離),而I2上所有的Epipolar line會相交在一點,稱之為epipole。
2. The fundamental matrix
在I1及 I2上相對應的特徵點,滿足:
which is:
We can build an linear system with n corresponding feature points located on two images:
Basic algorithm: normalized 8-points algorithm
重要觀念:
- Normalized特徵點。
- 雖然無法找到唯一解使得Af = 0,但可對A做SVD特異值分解,D之中最小eigenvalue對應的eigenvector即為使Af最小的向量。(Af = 0 => Af = λf = 0, satisfied when λ=0 )
- 到Step4算出來的F可能不是Rank2,所以需要再做一次SVD,令D之中最小eigenvalue為0,使F變為Rank2。
- RANSAC可用來濾掉outliers。
- Image rectification可用來對齊兩張影像的epipolar line,方便我們搜尋特徵點。(homography transformation) 參: Hartley.
留言
張貼留言