Epipolar Geometry

1. Epipolar Geometry

Two images taken at the same time, in different positions, by different cameras.
  • Don't need to search across the entire image to estimate the motion vector
  • Only one degree of freedom for the possible correspondence
假設有兩張連續拍攝的影像I1, I2,則物體PI2上的成像點必落在一條線上,稱之為Epipolar line(因為不知道P與I1的距離),而I2上所有的Epipolar line會相交在一點,稱之為epipole。

2. The fundamental matrix
I1及 I2上相對應的特徵點,滿足:


which is:

We can build an linear system with n corresponding feature points located on two images:
找到最佳解f即為Fundamental matrix。

Basic algorithm: normalized 8-points algorithm



重要觀念:
  1. Normalized特徵點。
  2. 雖然無法找到唯一解使得Af = 0,但可對A做SVD特異值分解,D之中最小eigenvalue對應的eigenvector即為使Af最小的向量。(Af = 0 => Af = λf = 0, satisfied when λ=0 )
  3. 到Step4算出來的F可能不是Rank2,所以需要再做一次SVD,令D之中最小eigenvalue為0,使F變為Rank2。
  4. RANSAC可用來濾掉outliers。
  5. Image rectification可用來對齊兩張影像的epipolar line,方便我們搜尋特徵點。(homography transformation) 參: Hartley.

留言

這個網誌中的熱門文章

Useful PX4 Parameters

Tuing PID parameters in QGroundcontrol (2)

Matlab Pixhawk Support Package installation (Windows)